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Abstract. A rich multiparametric class of solutions of the time-dependent Schrodinger equations,
including many integrable cases known at present of the three-state problem, is derived. In addition,
the class contains an infinite number of new multiparametric integrable subfamilies. Examples
of such four-parametric new subfamilies of asymmetric, in general, amplitude and frequency
modulation functions permitting solution of the three-state problem in terms of the Clausen function
are presented.

1. Introduction

The analytic solutions of the time-dependent Schrédinger equations have played a very
important role in the establishment of a number of unexpected and challenging effects in various
branches of atomic and optical physics as well as in many other fields (see, for instance [1-20]
and references therein). It is for this reason that, after the seminal paper of Bambini and
Berman [10] demonstrating the existence of entire classes of solvable models that may possess
unusual physical properties, the systematic search for analytically integrable cases has received
a great dial of attention during the last two decades. At present a number of families of analytic
solutions of both two-state [20-30] and three-state [31-38] problems are reported by various
authors.

However, it appears that these numerous classes of solutions are not actually independent.
In fact, it is already recognized that many of them can be united into more general
families containing, in addition, a variety of new classes. An illustrative example is the
recent generalization of all known two-state models that are solvable in terms of confluent
hypergeometric functions to a single formula [29]. Another example is the derivation of similar
results for the solutions of the two-state problem in terms of hypergeometric functions [30].
These results beg the question whether it is possible to also generalize the solutions of the three-
state problem. It should be noted here that the key component of the above generalizations
for the two-state model are the class property of the solvable models and the approach of the
equation of invariants proposed in [28,29]. Though the usefulness of the second component,
the equation of invariants, is restricted by the two-state problem only, the specific class property
of the solutions of the time-dependent Schrodinger equations providing the construction of the
generalized classes [28—30] is, in general, also an attribute of multi-state problems. So one
may also expect similar generalizations in this case.

In this paper we present exact analytic solutions for the three-state problem derived by
reduction of the initial system to a model third-order ordinary differential equation having three
complex singular points. The solutions form a ten-parametric (four discrete and six continuous)
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family covering a number of previously known solutions and, moreover, suggesting a variety
of new classes. Furthermore, it is possible to enlarge the class obtained to cover all the known
integrable classes.

Without any concern for a specific physical context, we consider a model three-state
system in which the transitions between states 1 and 2 and between states 2 and 3 are permitted
and the transition between states 1 and 3 is forbidden. The time evolution of the system is
governed by the Schrodinger equations for probability amplitudes a;, a; and as:

da1 .
i— = Ue g,
ddt
.das i i
13 =Ue'ig, + Ve %4, 1)
.da .
i—2 = Vetidg,
dt

where the amplitude (U, V) and frequency (§;,) modulations are assumed to be time-
dependent functions. This system is equivalent to one third-order linear differential equation
for a; (hereafter the alphabetical index denotes differentiation with respect to the corresponding
variable):

U V
a]tn + (2151[ - 2Ut + 162, —_ _t>a1”

%
o (isy, - & + U2+ V24 (i U (s = Y visy, — V) |a
1t U . 1t U 1t U 2t V 1t
_ U . v,
+U2(181, + Ut +i8y — 7’>a1 =0. )

Following our earlier paper [28-30], we consider the reduction of this equation via
transformation of both independent and dependent variables to some third-order linear
differential equation having a known analytic solution:

Uz + f(Duz +g(2)u; + h(z)u = 0. 3)

First we consider the formal solutions of system (1) rewritten for a complex argument z
and note that, if the functions aT,2,3 (z) are a solution of this system for some U*(z), V*(z) and
81 ,(z) (the set of these functions is referred to as the basic integrable model), then the functions
aj23(t) = a’f’m(z(t)) are the solution of the initial system (1) for functions U (), V (¢) and
812(¢) given by the simple formulae:

U@ =U* )—dz
®=U"(z éit
Z
= * —_— 4
V)=V (Z)dt 4)

N dz
51,21(1) = 81,21(1)5

for an arbitrary complex-valued function z(¢#). The last equation of this system is simply
another form of the obvious relation §; »(¢) = ST,Z(z(t)) that, however, is written here in this
form for purposes which will be explained below.

Thus, the sets of functions U, V and §; , for which the three-state problem (1) is solvable
form classes. Each integrable model of the time-dependent Schrédinger equations generates
an entire infinite class, since z(¢) is arbitrary, of (complex) solvable cases. This simple property
allows one to generate new solvable cases from the known ones, as well as to obtain a number
of new integrable models with real functions U (¢), V (¢) and §; »(¢) via an appropriate choice
of the free parameters available.
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In order to find independent basic solvable models we consider, according to the above,
only the transformation of the dependent variable:

u=¢)-a(z) &)

that changes equation (3) into the form

Ay + <3& +f) ay; + (3@ +2f& +g> a; + (ﬁ +f% +g& +h> a=0. (6)

2 2 2 2 2 2
Then, comparing this equation with equation (2) rewritten for z, U*(z), V*(z), and &7 ,(2),
we get three equations for the determination of the functions U*, V*, §7, and ¢(z). The
elimination of ¢(z) from this system leads to a system of two nonlinear differential
equations which presents a three-state analogue of the equation of invariants for the two-state
problem [29]. Though this system presents a considerably more complicated mathematical
problem than the equation of invariants, however, some solutions may be easily derived, as
shown below.

2. A 10-parametric class of integrable models

Consider the case when the transformed target equation (6) has the form
fiz+ fo gp(z) hp(z)
Alzzz t ———Aizz t 3 741zt 3 341
z(1—2) 22(1 —2) 22(1—2)
where fo | are constants and g,, i), are arbitrary polynomials in z. This equation permits
a general solution in the form of a superposition of power series convergent for all |z| < 1
because it has only simple singular points: z = 0, 1, co (for further details and some non-
essential restrictions not mentioned here see, for instance, [39]):

3 00
u(z) = Z <sz"m Z B,Z"zk) (®)

m=1 k=0

=0 @)

where C| » 3 are arbitrary constants to be defined from the initial conditions, B} are determined
by some recurrent relations and 7,, are the roots of the following cubic characteristic equation:

nn—10Dm—=2)+ fon(n —1) + gon+ho =0 ©)

where go and h are the free terms of the polynomials g, and £ ,.
The system of equations for determination of the basic integrable cases now becomes

Ur VF +
26y, — 2% 4igy, — = = Szt S
e Ve z(—2)

) U; . ) U\ /(... U . A g,(2)
<15;‘Z — U—Z) +U2+ V2 4+ (us;; - U—Z) (us,z - e+ - V*) = —22(1”_ 5 (0
Z
. ur . v’ hy(2)
*2 * z * 2z _ P
U <1811+m+1821—w> —m
It is immediately seen that this system is satisfied if we set
U*(Z) — ngk'(l — )™
V*(Z) — VO*Zkz(l _ Z)nz (1 1)

B2 Y12
810, (2) = ~ +—

1—z
with any integer or half-integer ky5,n1, > —1, the parameters Uj, Vi, B1,2, y1,2 being
arbitrary complex constants.
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Thus, we have derived an infinite 10-parametric class of analytically integrable models of
the three-state problem explicitly given by equations (4) and (11). Four of these parameters,
ki and n| 5, are discrete. Fixing these parameters we obtain subfamilies with six continuous
parameters.

In the case of constant detunings, §; 2 = A - t, the obtained class defines the following
quasi-stepwise or bell-shaped asymmetric, in general, four-parametric classes of pulses given
in parametric form (we set 81, = Ao, yi2 = Ao+ ), Uy = plo, Vi = uVp)

Zk1+1(1 _ Z)nl+1

U=pnU
wlo—— —— ’
Zk2+1(1 _ Z)112+1 ( )
V=V
AZ+ 1
ZH
e = m (13)

When A = 0, the relation (13) can be inverted to get z = 1/(1 + e~!/), Then the derived
class is explicitly given by
- (1+ e_’/“)“'kl 1+ ez/u)lwl
0
- (1+ e—z//4)1+k2(1 + et/u)l+n2 '

As seen, the members of this subfamily are symmetric in time when k; = n; and k, = n,.

(14)

3. Two subfamilies of models integrable in terms of Clausen functions

In a number of cases, it is possible to choose the parameters k) 2, 1 » so that the solution a; ()

of the three-state problem can be written in terms of known mathematical functions such as

the Bessel functions, Clausen function, other generalized hypergeometric functions, etc [40].
For example, when the polynomials g, and 4, are of the form

gp=(g1z+g)( —2)

hp = (hiz+ho)(1 — 2)° (15)

then the initial target equation (3) (from which equation (7) is derived) is the equation satisfied
by the Clausen function 3 F>(p1, p2, p3; q1, q2; z), the factor ¢ being of the form: ¢(z) = z".
So the final solution of the three-state problem in this case is explicitly given by

a; =CiZ" 3B —&,m —&,m =& 1+m —m, L+ —n3; 2)
+Co2" 3P (m =& m—&,m =& L+m—ni, L+n—n3; 2)
+C32P 3P — &, s — &, m3 =& L+ — o, L4193 — 125 2) (16)

where 7; 5 3 are defined by (9) and &) ; 3 are the roots of the following cubic equation:

EE-DE-2) - fisE -1 —gi§—hi =0. 7)

The particular values of the parameters k; » and n; , for which (15) is the case, as well as
the corresponding parameters fo 1, go,1, ho,1 (expressed in terms of U[, V' and 81*’2), can be
easily found by direct substitution of (11) and (15) into (10). We present here two examples
from a variety of new solutions in terms of the Clausen function that are of especial interest for
numerous applications. Though the solutions are applicable for both amplitude and frequency
modulations, here we restrict ourselves to the case of amplitude modulation only.
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Figure 1. Pulse shapes given by equations (18), Up = 1, Vo = 0.75, A/ = —0.75, u > 0.

(1) The first class we present is derived when k| = n; = —%, ky = —1,n, = —%. One
can easily check then that §; + 8, = y; +y» = 0. As can be seen, this class corresponds to the
two-photon resonance §; + 8§, = 0.

For constant detunings, §; = —§, = A-f, A # 0, the class consists of a pair of asymmetric
pulses defined by
JVz(1 — 1-
U=ntp Dy (8)
AZ+ AZ+

where z(¢) is given by (13). The shapes of the pulses are shown in figure 1. The pulses
corresponding to A = 0 are explicitly given as

Uy t Vo
U= sech ( — | 19
2 (m) Jirei (1)

The parameters of the solution (16) are

1 iAL ADE
§1=—5 b3 =—=%,/— +Usn
2 4
(20)

1—iAp Ly AZp?
2 4
Note that the solution (16) is in force also for A = 0, i.e., in the case of one-photon
resonance, §; = &, = 0, though in this case, as is seen from the last equations of (4) and (11),
z(t) can be an arbitrary function. The resultant class of pulses has been presented by Carroll
and Hioe [34]:

n =0 M3 = + Vgul

v=—% &, N & 21
V=g dr N T
(2) The second class we present is derived when ky = —1,ny =0,k = —1,n, = —%.

In this case one derives 8; = y; = 0. So that the first pulse is resonant to the transition it is
related: §; = 0. If the second detuning is constant, § = A - ¢, then the pulses of this class are
given by

(22)
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Figure 2. Pulse shapes given by equations (22), Uy = 1, Vo = 0.75, A/ = —0.75, u < 0.

with z(¢) again defined by (13). These are also asymmetric pulses, in general (see figure 2).
The pair corresponding to A = 0 are

U= UO V= VO (23)
T l+el/mn Sl ten

The solution is again given by (16), with &; » 3 now being

£ =—1+iAp 23 = HiUpu (24)
and 71 53 to be defined from the equation

N — 1D —2)+(Aun+3)nn — 1)+ (Ap+ 1+ Usp’ + Vg u’n
HAW - Uguz =0. (25)

4. Summary

In conclusion, we have presented a wide class of analytic solutions of the three-state problem
that could have numerous applications in many areas of physics. The class includes a number of
known solutions and additionally contains (countable) infinite number of new multiparametric
subfamilies. Note that it is possible to enlarge the derived class to more general types of
amplitude and frequency modulation functions. Various new interesting pulse types, including
those ones having a double peak structure, will be presented elsewhere.

In a number of cases, the solution of the time-dependent Schrédinger equations can be
written in terms of known mathematical functions such as the Bessel functions, Clausen
function, other generalized hypergeometric functions, etc. We have presented two examples
of such new subfamilies, the solutions for which are written in terms of the Clausen function.

Finally, we would like to note that the extension of the results of this paper to the multi-state
case is straightforward [41].
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